Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sci Rep ; 12(1): 3483, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1730311

ABSTRACT

Human social behavior plays a crucial role in how pathogens like SARS-CoV-2 or fake news spread in a population. Social interactions determine the contact network among individuals, while spreading, requiring individual-to-individual transmission, takes place on top of the network. Studying the topological aspects of a contact network, therefore, not only has the potential of leading to valuable insights into how the behavior of individuals impacts spreading phenomena, but it may also open up possibilities for devising effective behavioral interventions. Because of the temporal nature of interactions-since the topology of the network, containing who is in contact with whom, when, for how long, and in which precise sequence, varies (rapidly) in time-analyzing them requires developing network methods and metrics that respect temporal variability, in contrast to those developed for static (i.e., time-invariant) networks. Here, by means of event mapping, we propose a method to quantify how quickly agents mingle by transforming temporal network data of agent contacts. We define a novel measure called contact sequence centrality, which quantifies the impact of an individual on the contact sequences, reflecting the individual's behavioral potential for spreading. Comparing contact sequence centrality across agents allows for ranking the impact of agents and identifying potential 'behavioral super-spreaders'. The method is applied to social interaction data collected at an art fair in Amsterdam. We relate the measure to the existing network metrics, both temporal and static, and find that (mostly at longer time scales) traditional metrics lose their resemblance to contact sequence centrality. Our work highlights the importance of accounting for the sequential nature of contacts when analyzing social interactions.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Social Behavior , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
2.
Proc Biol Sci ; 289(1968): 20211809, 2022 02 09.
Article in English | MEDLINE | ID: covidwho-1677340

ABSTRACT

Early warning indicators based on critical slowing down have been suggested as a model-independent and low-cost tool to anticipate the (re)emergence of infectious diseases. We studied whether such indicators could reliably have anticipated the second COVID-19 wave in European countries. Contrary to theoretical predictions, we found that characteristic early warning indicators generally decreased rather than increased prior to the second wave. A model explains this unexpected finding as a result of transient dynamics and the multiple timescales of relaxation during a non-stationary epidemic. Particularly, if an epidemic that seems initially contained after a first wave does not fully settle to its new quasi-equilibrium prior to changing circumstances or conditions that force a second wave, then indicators will show a decreasing rather than an increasing trend as a result of the persistent transient trajectory of the first wave. Our simulations show that this lack of timescale separation was to be expected during the second European epidemic wave of COVID-19. Overall, our results emphasize that the theory of critical slowing down applies only when the external forcing of the system across a critical point is slow relative to the internal system dynamics.


Subject(s)
COVID-19 , Communicable Diseases , Europe , Humans , SARS-CoV-2
3.
Sci Rep ; 11(1): 19463, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1447325

ABSTRACT

In the wake of the COVID-19 pandemic, physical distancing behavior turned out to be key to mitigating the virus spread. Therefore, it is crucial that we understand how we can successfully alter our behavior and promote physical distancing. We present a framework to systematically assess the effectiveness of behavioral interventions to stimulate physical distancing. In addition, we demonstrate the feasibility of this framework in a large-scale natural experiment (N = 639) conducted during an art fair. In an experimental design, we varied interventions to evaluate the effect of face masks, walking directions, and immediate feedback on visitors' contacts. We represent visitors as nodes, and their contacts as links in a contact network. Subsequently, we used network modelling to test for differences in these contact networks. We find no evidence that face masks influence physical distancing, while unidirectional walking directions and buzzer feedback do positively impact physical distancing. This study offers a feasible way to optimize physical distancing interventions through scientific research. As such, the presented framework provides society with the means to directly evaluate interventions, so that policy can be based on evidence rather than conjecture.


Subject(s)
Behavior , COVID-19/prevention & control , COVID-19/psychology , Physical Distancing , Adult , Feedback , Female , Humans , Male , Masks , Middle Aged , Models, Theoretical , Public Policy , Surveys and Questionnaires , Young Adult
4.
Sci Data ; 8(1): 179, 2021 07 15.
Article in English | MEDLINE | ID: covidwho-1315605

ABSTRACT

In the absence of a vaccine, social distancing behaviour is pivotal to mitigate COVID-19 virus spread. In this large-scale behavioural experiment, we gathered data during Smart Distance Lab: The Art Fair (n = 839) between August 28 and 30, 2020 in Amsterdam, the Netherlands. We varied walking directions (bidirectional, unidirectional, and no directions) and supplementary interventions (face mask and buzzer to alert visitors of 1.5 metres distance). We captured visitors' movements using cameras, registered their contacts (defined as within 1.5 metres) using wearable sensors, and assessed their attitudes toward COVID-19 as well as their experience during the event using questionnaires. We also registered environmental measures (e.g., humidity). In this paper, we describe this unprecedented, multi-modal experimental data set on social distancing, including psychological, behavioural, and environmental measures. The data set is available on figshare and in a MySQL database. It can be used to gain insight into (attitudes toward) behavioural interventions promoting social distancing, to calibrate pedestrian models, and to inform new studies on behavioural interventions.


Subject(s)
COVID-19/prevention & control , Pandemics/prevention & control , Physical Distancing , Humans , Netherlands , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL